The Nature of Phosphorus(III) Ligands As Probed by Molybdenum-95 NMR Spectroscopy

Elmer C. Alyea* and Shuquan Song

Guelph-Waterloo Centre for Graduate Work in Chemistry, Guelph Campus, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Received June 4, 1992

The effectiveness of a phosphorus(III) compound (i.e. PY₃, Y = H, R, Ar, OR, NR₂, halide) as a ligand for a transition metal depends upon a combination of its σ -donating, π -accepting, and steric properties. Common measures of the coordinating ability of a phosphorus(III) ligand include its Bronsted basicity (given by pK_a),¹ the coordination chemical shift of the ³¹P NMR resonance $[\Delta\delta(^{31}P), in ppm]$,² the size of the PY₃ ligand (estimated by the cone angle, θ),³ and the magnitude of the trans-carbonyl infrared stretching frequency in its metal carbonyl complexes [e.g. the electronic parameter χ is derived from the $\nu(CO)$ A₁ mode in Ni(CO)₃(PY₃) compounds].^{3a,4,5} Although widely utilized, these parameters have serious limitations. For example, pK_a only measures the ligand σ -donicity, i.e. interaction with the proton. Similarly, $\Delta \delta({}^{31}P)$ reflects primarily a property of the free ligand rather than the complex since its magnitude may depend more on C-P-C bond angle changes than the strength of the M-P interaction. Cone angles for PY₃ are estimates of limiting values,^{3a} whereas a range of θ and "ligand profiles" are possible.^{3b} The differentiation of σ - and π -properties of PY₃ ligands derived from carbonyl infrared data rests upon an assumption of their relative influence on cis- and trans-carbonyl bonds.⁶ In this communication, we suggest the utility of the ⁹⁵Mo NMR chemical shift as a very sensitive indicator of the total coordinating ability of phosphorus(III) ligands. To illustrate this application, we present ⁹⁵Mo NMR spectroscopic evidence to show that, in variance with the widely accepted conclusions based on carbonyl infrared data,⁵⁻⁷ PCl₃ and related chlorophosphine ligands are very weak π -acceptors and are not strong π -acceptors like PF₃.

In extending our ⁹⁵Mo NMR studies of Mo(CO)_{6-n}L_n (n = 0-3, L = N, P, As, Sb ligands) complexes⁸ to an extensive series of *fac*-Mo(CO)₃(PY₃)₃ (Y = R, Ar, OR, NR₂, halide) complexes, we have found that δ ⁽⁹⁵Mo) varies from -1860 ppm⁹ for the PF₃ case to -910 ppm for the PCl₃ derivative. The large deshielding

- (2) (a) McAuliffe, C. A.; Levason, W. Phosphine, Arsine and Stibine Complexes of the Transition Elements; Elsevier: Amsterdam, 1979.
 (b) Pregosin, P. S.; Kunz, R. W. ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes; No. 16 in the series NMR Basic Principles and Progress; Diehl, P., Fluck, E., Kosfeld, R., Eds.; Springer-Verlag: New York, 1979. (c) Dixon, K. R. Multinuclear NMR; Mason, J., Ed.; Plenum Press: New York, 1987; Chapter 13.
- (3) (a) The angle needed to encompass rotation of the ligand about a metal at the apex of a cone is estimated from CPK molecular models: Tolman, C. A. Chem. Rev. 1977, 77, 313. (b) Calculations using X-ray coordinates for a few bulky phosphines show that a range of θ values and "ligand profiles" may be attained for a given ligand: Ferguson, G.; Roberts, P. J.; Alyea, E. C.; Khan, M. Inorg. Chem. 1978, 17, 2965.
 (4) Bartik, T.; Himmler, T.; Schulte, H.-G.; Seevogel, K. J. Organomet.
- (4) Bartik, T.; Himmler, T.; Schulte, H.-G.; Seevogel, K. J. Organomet Chem. 1984, 272, 29.
- (5) Force constant data calculated from the IR frequencies by the Cotton-Kraihanzel technique provide a π-acceptor series for phosphine ligands: Huheey, J. E. *Inorganic Chemistry*, 3rd ed.; Harper and Row: New York, 1983; and references cited therein.
- (6) Graham, W. A. G. Inorg. Chem. 1968, 7, 315.
- (7) McAuliffe, C. A. Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, U.K., 1987; Vol. 2, p 1033.
- (8) (a) Alyea, E. C.; Somogyvari, A. Transition Met. Chem. 1987, 12, 310.
 (b) Alyea, E. C.; Somogyvari, A. Can. J. Chem. 1988, 66, 397.
 (c) Alyea, E. C.; Fisher, K. J.; Gossage, R. A. Spectrochim. Acta 1989, 45A, 203.
- (9) Bailey, J. T.; Clark, R. J.; Levy, G. C. Inorg. Chem. 1982, 21, 2085.

effect of the PCl₃ ligand was doubly surprising, given the expectation that PCl₃ was virtually equal to PF₃ in π -acceptor ability and that an earlier report¹⁰ gave δ (⁹⁵Mo) = -1885 ppm for the *fac*-Mo(CO)₃(PCl₃)₃ complex. Our observation of ⁹⁵Mo chemical shift values for *fac*-Mo(CO)₃(PPh_{3-n}Cl_n)₃ (n = 0-2) of -1265, -1319, and -1124 ppm, respectively, verify the authenticity of the extreme downfield position of the resonance for the PCl₃ complex. As previously found for mono- and disubstituted molybdenum carbonyl complexes,^{8a,b} the other PY₃ complexes show the shielding order PR₃ < P(OR)₃ < PF₃. Discussion of the factors influencing the shielding of the quadrupolar molybdenum nucleus (I = 5/2, $Q = -0.015 \times 10^{26} \text{ m}^2$ for ⁹⁵Mo) requires consideration of the dominant paramagnetic term

$$\delta \propto -\sigma_{\rm p} = \Delta E^{-1} \langle r^{-3} \rangle_{\rm d} k^2$$

Although the "nephelauxetic" contribution to σ_p can predominate {e.g. $\delta(^{95}Mo)$ occurs upfield for $[Mo(CO)_5X]^-$ in the order X = Cl < Br < I}^{11,12} due to greater d-orbital expansion and bond covalency, the "spectrochemical" ΔE term is known to be most important for a series with similar ligands such as common phosphorus(III) ligands.^{8,12,13}

In order to differentiate the relative importance of σ -donor and π -acceptor effects to the magnitude of the HOMO-LUMO ΔE gap for the present series of fac-Mo(CO)₃(PY₃)₃ complexes, we have plotted in Figure 1 the Kabachnik $\sum \sigma^{ph}$ parameter¹⁴ for some representative PY₃ ligands against the δ (⁹⁵Mo) values. The Kabachnik substituent parameters, derived from ionization data of phosphoric acids using a Hammett-type relationship, have been employed by earlier workers^{1b,3a} to judge the transmission of electronic effects through phosphorus in PY₃ ligands. We found earlier for a series of $Mo(CO)_3(bipy)P(C_6H_4-X-p)_3$ complexes that correlations of $\delta(^{95}Mo)$ with $\Sigma \sigma^{ph}$ were superior to those against pK_a, $\Delta\delta(^{31}P)$, χ , and $\nu(CO)$.¹⁵ The importance of the π -acceptor ability of PY₃ in causing greater shielding on the molybdenum atom is shown by the high-field resonance for the complexes of PF3 and the phosphites. Indeed, the near invariance of $\delta(^{95}Mo)$ values in the series $Mo(CO)_{6-n}(PF_3)_n$ (n = 0-6) shows the equivalence of the π -acceptor ability of CO and PF₃, not the insensitivity of δ ⁽⁹⁵Mo) to the electronic environment.¹⁶ It should be noted, however, that molybdenum d-orbital expansion via the π -interaction would also contribute to the molybdenum atom being more shielded. Similarly, the deshielded δ ⁽⁹⁵Mo) values observed for the PR3 and PPh3 complexes can be mainly attributed to the decreased π -acceptor ability of these PY₃ ligands since

- (10) Dysart, S.; Georgii, I.; Mann, B. E. J. Organomet. Chem. 1981, 213, C10.
- (11) Alyea, E. C.; Malek, A.; Malito, J. Inorg. Chim. Acta 1985, 101, 147.
- (12) Minelli, M.; Enemark, J. H.; Brownlee, R. T. C.; O'Connor, M. J.; Wedd, A. G. Coord. Chem. Rev. 1985, 68, 169.
- (13) Mason, J. Chem. Rev. 1987, 87, 1299.
- (14) Mastryukova, T. A.; Kabachnik, M. I. Russ. Chem. Rev. 1969, 39, 795. As an example calculation of Σσ^{bh}, since Table I lists σ^{bh} values of -1.10 and -0.59 for Et and Ph substituents, respectively, Σσ^{ph} for PEtPh₂ equals -2.28.
 (15) Alyea, E. C.; Gossage, R. A.; Malito, J.; Munir, Z. A. Polyhedron 1990,
- (15) Alyea, E. C.; Gossage, R. A.; Malito, J.; Munir, Z. A. Polyhedron 1990, 9, 1059.
- (16) The ⁹⁵Mo chemical shifts occur within a 3.4 ppm range for the seven complexes of the CO/PF₃ series.⁹

 ⁽a) Henderson, W. A., Jr.; Streuli, C. A. J. Am. Chem. Soc. 1960, 82, 5791.
 (b) Allman, T.; Goel, R. G. Can. J. Chem. 1982, 60, 716.

Figure 1. Graph of $\delta({}^{95}Mo)$ for $[fac-Mo(CO)_3L_3]$ against Kabachnik's parameter $\sum \sigma^{ph}$ for the substituents of the phosphorus ligands: 1, PF₃; 2, $P(OCH_2CH_2Cl)_3$; 3, $P(OMe)_3$; 4, PH_2Ph ; 5, $\hat{P}(OEt)_3$; 6, $P(OPr^i)_3$; 7, PMe₃; 8, PEt₃; 9, PBuⁿ₃; 10, P(NMe₂)₃; 11, PEtPh₂; 12, PPh₃; 13, PClPh₂; 14, PCl₂Ph; 15, PCl₃.

their increased σ -basicity relative to PF₃ and their expectedly greater covalent interaction should have increased the subsequent shielding.

In earlier ⁹⁵Mo NMR studies of $Mo(CO)_{6-n}(PY_3)_n$ (n = 1, 2) complexes we gave evidence of steric effects being superimposed on electronic effects.^{8a,b} The expectation that δ (⁹⁵Mo) will be even more deshielded for bulky PY₃ ligands relative to smaller ones for the present fac series was borne out by the data. For example, $\delta({}^{95}Mo)$ values^{8a,b,12} for the Mo(CO)_{6-n}[P(OMe)₃]_n (n = 1-3) complexes (-1864, -1827, and -1749 ppm, respectively) show a regular deshielding for the relatively small phosphite (θ = 107°).^{3a} In contrast, the ⁹⁵Mo chemical shifts for the $Mo(CO)_{6-n}(PPh_3)_n$ (n = 1-3) complexes (-1743, -1556, and -1265 ppm) show an irregular enhanced deshielding with increasing degree of substitution for the larger PPh₃ ($\theta = 145^{\circ}$). Determination of the "steric threshold" and quantification of the steric effect are being sought in further ⁹⁵Mo NMR studies.

The dramatic and initially surprising deshielding effect observed for the PClPh₂, PCl₂Ph, and PCl₃ complexes can only be explained by their combination of low basicity ($\sum \sigma^{ph} = -0.25, 1.38$, and 2.79 and $\chi = 23.4$, 33.9, and 44.4, respectively) and very low π -acceptor ability. In contrast, fac-Mo(CO)₃(P(OMe)₃)₃ has $\delta(^{95}Mo)$ at -1749 ppm even though the basicity of P(OMe)₃ is

similar ($\sum \sigma^{ph} = -0.36$, $\chi = 23.1$) to that of PClPh₂; so the great decrease in molvbdenum shielding for the latter case $[\delta(^{95}Mo)]$ = -1319 ppm] must be due to much reduced π -acceptor ability. Several other $Mo(CO)_3L_3$ complexes with nitrogen and oxygen ligands of no feasible π -acceptor ability show $\delta(^{95}Mo)$ resonances downfield of -1000 ppm.¹⁷ Given that PF₃ has a basicity [$\Sigma \sigma^{ph}$ = 1.68] that is intermediate to those of PCl_2Ph and PCl_3 , the large difference in δ (⁹⁵Mo) values must be attributed to the much decreased π -acceptor nature of the chlorophosphines. Their low σ -donor ability is compatible with immeasurably low pK, values and large, positive Kabachnik values, but our results reverse the commonly accepted order of π -acceptor properties, given as PPh₃ < PClPh₂ < PCl₂Ph < PCl₃.⁵⁻⁷ Our conclusions from ⁹⁵Mo NMR spectroscopy that chlorophosphines have very weak σ -donor and π -acceptor properties is supported by earlier reports of the low bond strength¹⁸ and the facile ease of exchange¹⁹ of the Mo-PCl₃ bond. The earlier report¹⁰ that ${}^{1}J(Mo-P) = 251$ Hz for fac- $Mo(CO)_3(PCl_3)_3$, confirmed in this work, is still entirely consistent with PCl₃ having low π -acceptor ability. In our view, the magnitude of the coupling constant simply reflects the s-character of the Mo-P bond, not the σ -bond strength nor its enhancement by synergistic π -bonding, and is primarily a function of the electronegativity of the substituent. Similarly, the enhanced magnitude of 2041 cm⁻¹ for $\nu(CO)(A_1)$ of the PCl₃ complex, compared to 1948 cm⁻¹ for the PPh₃ case (and 2065 cm⁻¹ for the PF_3 complex), is actually expected²⁰ as a consequence of the weak σ -donor ability of PCl₃, which weakens the Mo-C d π -p π bond. The common assumption that the A_1 mode of infrared carbonyl stretching frequencies reflects primarily the π -acceptor ability of a trans PY₃ ligand⁵⁻⁷ should not be invoked for PCl₃ and the other chlorophosphine ligands or for any weak σ -donor ligand with weak π -acceptor ability.

In conclusion, we suggest that $\delta(^{95}Mo)$ is a sensitive probe of the nature of phosphorus(III) ligands, with a plot of the Kabachnik electronic parameter $\sum \sigma^{\rm ph}$ against δ ⁽⁹⁵Mo) allowing a qualitative differentiation of σ - and π -bonding effects. The application to chlorophosphine ligands reverses the widely accepted order of their π -acceptor ability and assigns very low π -acceptor character to PCl₃ as compared to PF₃. Continuing studies involve correlations of $\delta(^{95}Mo)$ with a wider range of PY₃ properties and $M_0(CO)_3(PY_3)_3$ complexes.

Acknowledgment. We thank the NSERC of Canada for continuing financial support and the Southwestern Ontario NMR Centre for use of the 400-MHz spectrometer.

- (17) Alyea, E. C.; Song, S. Unpublished results.
 (18) Nolan, S. P.; Hoff, C. D. J. Organomet. Chem. 1985, 290, 365.
- (19) Zingales, F.; Canziani, F.; Basolo, F. J. Organomet. Chem. 1967, 7, 461.
- (20) Angelici, R. J. J. Inorg. Nucl. Chem. 1966, 28, 2627.